Package: dIr (via r-universe)

November 7, 2024

Title Download and Cache Files Safely
Version 1.0.1.9001

Description The goal of dlr is to provide a friendly wrapper around
the common pattern of downloading a file if that file does not
already exist locally.

License Apache License (>= 2)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3

Imports cli, digest, fs, glue, rappdirs, rlang, utils
URL https://github.com/macmillancontentscience/dlr

BugReports https://github.com/macmillancontentscience/dlr/issues
VignetteBuilder knitr

Config/pak/sysreqs make

Repository https://jonthegeek.r-universe.dev

RemoteUrl https://github.com/macmillancontentscience/dlIr

RemoteRef HEAD

RemoteSha 3c0473e61f2fe8e05b8ad4622fc25bcb843fcb54

Contents

app_cache_dir L
construct_cached_file_patho
construct_processed_filename L.
create_app_cache_dir
maybe_cache

https://github.com/macmillancontentscience/dlr
https://github.com/macmillancontentscience/dlr/issues

2 construct_cached._file_path
MAYDE_PIOCESS . . v v v v v e 5
read_or_cache e 7
T€AA_OT_PIOCESS . . v v v v v v e e i e e e e e e e e e e e e e e 8
set_app_cache_dir. L 10
SEt_LIMEOUL v v v o e e e e e e e e e s, 11

Index 12

app_cache_dir Path to an App Cache Directory

Description

App cache directories can depend on the user’s operating system and an overall R_USER_CACHE_DIR
environment variable. We also respect a per-app option (appname.dir), and a per-app environment
variable (APPNAME_CACHE_DIR). This function returns the path that will be used for a given app’s
cache.

Usage

app_cache_dir(appname, verbose = interactive())
Arguments
appname Character; the name of the application that will "own" the cache, such as the
name of a package.
Value
The full path to the app’s cache directory.
Examples
app_cache_dir("myApp")
construct_cached_file_path
Construct Cache Path
Description
Construct the full path to the cached version of a file within a particular app’s cache, using the
source path of the file to make sure the cache filename is unique.
Usage

construct_cached_file_path(source_path, appname, extension = "")

construct_processed_filename 3

Arguments
source_path Character scalar; the full path to the source file.
appname Character; the name of the application that will "own" the cache, such as the
name of a package.
extension Character scalar; an optional filename extension.
Value

The full path to the processed version of source_path in the app’s cache directory.

Examples

construct_cached_file_path(
source_path = "my/file.txt",
appname = "dlr",
extension = "rds

n

construct_processed_filename
Construct Processed Filename

Description

Given the path to a file, construct a unique filename using the hash of the path.

Usage

construct_processed_filename(source_path, extension = "")
Arguments

source_path Character scalar; the full path to the source file.

extension Character scalar; an optional filename extension.
Value

A unique filename for a processed version of the file.

Examples

construct_processed_filename(
source_path = "my/file.txt"”,
extension = "rds

n

4 maybe_cache

create_app_cache_dir Create a Cache Directory for an App

Description

Create the default path expected by app_cache_dir().

Usage

create_app_cache_dir (appname)

Arguments
appname Character; the name of the application that will "own" the cache, such as the
name of a package.
Value

A normalized path to a cache directory. The directory is created if the user has write access and the
directory does not exist.

Examples

Executing this function creates a cache directory.
create_app_cache_dir("dlr")

maybe_cache Cache a File if Necessary

Description

This function wraps maybe_process(), specifying the app’s cache directory.

Usage

maybe_cache(
source_path,
appname,
filename = construct_processed_filename(source_path),
process_f = readRDS,
process_args = NULL,
write_f = saveRDS,
write_args = NULL,
force_process = FALSE

maybe_process

Arguments

source_path

appname
filename
process_f
process_args

write_f

write_args

force_process

Value

Character scalar; the path to the raw file. Paths starting with http://, https://,
ftp://, or ftps:// will be downloaded to a temp file if the processed version
is not already available.

Character; the name of the application that will "own" the cache, such as the
name of a package.

Character; an optional filename for the cached version of the file. By default, a
filename is constructed using construct_processed_filename().

A function or one-sided formula to use to process the source file. source_path
will be passed as the first argument to this function. Defaults to read_f.

An optional list of additional arguments to process_f.

A function or one-sided formula to use to save the processed file. The processed
object will be passed as the first argument to this function, and target_path
will be passed as the second argument. Defaults to base: : saveRDS().

An optional list of additional arguments to write_f.

A logical scalar indicating whether we should process the source file even if the
target already exists. This can be particularly useful if you wish to redownload
a file.

The normalized target_path.

Examples

if (interactive()) {
target_path <- maybe_cache(
"https://query.data.world/s/owgxojjiphaypjmlxldsp5661lck7co”,
appname = "dlr",
process_f = read.csv

)
target_path

unlink(target_path)

}

maybe_process

Process a File if Necessary

Description

Sometimes you just need to get a processed file to a particular location, without reading the data.
For example, you might need to download a lookup table used by various functions in a package,
independent of a particular function call that needs the data. This function does the processing if it
hasn’t already been done.

Usage

maybe_process(
source_path,
target_path,

maybe_process

process_f = readRDS,
process_args = NULL,
write_f = saveRDS,
write_args = NULL,

force_process

Arguments

source_path

target_path
process_f
process_args

write_f

write_args

force_process

Value

= FALSE

Character scalar; the path to the raw file. Paths starting with http://, https://,
ftp://, or ftps:// will be downloaded to a temp file if the processed version
is not already available.

Character scalar; the path where the processed version of the file should be
stored.

A function or one-sided formula to use to process the source file. source_path
will be passed as the first argument to this function. Defaults to read_f.

An optional list of additional arguments to process_f.

A function or one-sided formula to use to save the processed file. The processed
object will be passed as the first argument to this function, and target_path
will be passed as the second argument. Defaults to base: : saveRDS().

An optional list of additional arguments to write_f.

A logical scalar indicating whether we should process the source file even if the
target already exists. This can be particularly useful if you wish to redownload
a file.

The normalized target_path.

Examples

if (interactive()) {
temp_filename <- tempfile()

maybe_process(

"https://query.data.world/s/owgxojjiphaypjmlxldsp5661lck7co”,

target_path =

temp_filename,

process_f = read.csv

)

unlink(temp_filename)

3

read_or_cache

read_or_cache

Read or Cache a File

Description

This function wraps read_or_process(), specifying an app’s cache directory as the target direc-

tory.

Usage

read_or_cache(
source_path,

appname,
filename =

construct_processed_filename(source_path),

process_f = readRDS,
process_args = NULL,
read_f = readRDS,
read_args = NULL,
write_f = saveRDS,
write_args = NULL,

force_process

Arguments

source_path

appname
filename
process_f

process_args

read_f
read_args

write_f

write_args

force_process

= FALSE

Character scalar; the path to the raw file. Paths starting with http://, https://,
ftp://, or ftps:// will be downloaded to a temp file if the processed version
is not already available.

Character; the name of the application that will "own" the cache, such as the
name of a package.

Character; an optional filename for the cached version of the file. By default, a
filename is constructed using construct_processed_filename().

A function or one-sided formula to use to process the source file. source_path
will be passed as the first argument to this function. Defaults to read_f.

An optional list of additional arguments to process_f.

A function or one-sided formula to use to read the processed file. target_path
will be passed as the first argument to this function. Defaults to base: : readRDS().

An optional list of additional arguments to read_f.

A function or one-sided formula to use to save the processed file. The processed
object will be passed as the first argument to this function, and target_path
will be passed as the second argument. Defaults to base: : saveRDS().

An optional list of additional arguments to write_f.

A logical scalar indicating whether we should process the source file even if the
target already exists. This can be particularly useful if you wish to redownload
a file.

Value

The processed object.

Examples

if (interactive()) {
austin_smoke_free <- read_or_cache(
"https://query.data.world/s/owgxojjiphaypjmlxldsp5661lck7co”,

appname = "dlr",

process_f = read.csv
)
head(austin_smoke_free)

}

if (interactive()) {
Calling the function a second time gives the result instantly.
austin_smoke_free <- read_or_cache(
"https://query.data.world/s/owgxojjiphaypjmlxldsp5661lck7co”,

appname = "dlr",

process_f = read.csv
)
head(austin_smoke_free)

}

if (interactive()) {
Remove the generated file.
unlink(
construct_cached_file_path(
"https://query.data.world/s/owgxojjiphaypjmlxldsp5661lck7co”
)
)
3

read_or_process

read_or_process Read or Process a File

Description

Often, a file must be processed before being usable in R. It can be useful to save the processed
contents of that file in a standard format, such as RDS, so that the file does not need to be processed

the next time it is loaded.

Usage

read_or_process(
source_path,
target_path,
process_f = readRDS,
process_args = NULL,

read_or_process 9

read_f = readRDS,
read_args = NULL,
write_f = saveRDS,
write_args = NULL,
force_process = FALSE

Arguments

source_path Character scalar; the path to the raw file. Paths starting with http://, https://,
ftp://, or ftps:// will be downloaded to a temp file if the processed version
is not already available.

target_path Character scalar; the path where the processed version of the file should be
stored.
process_f A function or one-sided formula to use to process the source file. source_path

will be passed as the first argument to this function. Defaults to read_f.

process_args An optional list of additional arguments to process_f.

read_f A function or one-sided formula to use to read the processed file. target_path
will be passed as the first argument to this function. Defaults to base: : readRDS().

read_args An optional list of additional arguments to read_f.

write_f A function or one-sided formula to use to save the processed file. The processed

object will be passed as the first argument to this function, and target_path
will be passed as the second argument. Defaults to base: : saveRDS().

write_args An optional list of additional arguments to write_f.

force_process A logical scalar indicating whether we should process the source file even if the
target already exists. This can be particularly useful if you wish to redownload
a file.

Value

The processed object.

Examples

if (interactive()) {

temp_filename <- tempfile()

austin_smoke_free <- read_or_process(
"https://query.data.world/s/owqgxojjiphaypjmlxldsp5661ck7co”,
target_path = temp_filename,
process_f = read.csv

)

head(austin_smoke_free)

3

Calling the function a second time gives the result instantly.
if (interactive()) {
austin_smoke_free <- read_or_process(
"https://query.data.world/s/owgxojjiphaypjmlxldsp5661lck7co”,

10 set_app_cache_dir

target_path = temp_filename,
process_f = read.csv

)

head(austin_smoke_free)

}

if (interactive()) {
Remove the generated file.
unlink(temp_filename)

}

set_app_cache_dir Set a Cache Directory for an App

Description

Override the default paths used by app_cache_dir ().

Usage

set_app_cache_dir(appname, cache_dir = NULL)

Arguments
appname Character; the name of the application that will "own" the cache, such as the
name of a package.
cache_dir Character scalar; a path to a cache directory.
Value

A normalized path to a cache directory. The directory is created if the user has write access and the
directory does not exist. An option is also set so future calls to app_cache_dir () will respect the
change.

Examples

Executing this function creates a cache directory.
set_app_cache_dir(appname = "dlr", cache_dir = "/my/cache/path")

set_timeout 11

set_timeout Set Download Timeout

Description

The default timeout for downloads is 60 seconds. This is not long enough for many of the files that
are downloaded using this package. We therefore supply a convenience function to easily change
this setting. You can permanently change this default by setting R_DEFAULT_INTERNET_TIMEOUT in
your .Renviron.

Usage

set_timeout(seconds = 600L)

Arguments

seconds The number of seconds to set as the timeout (default 600 seconds).

Value

A list with the old timeout setting (invisibly).

Examples

getOption(”timeout”)
old_setting <- set_timeout()
getOption(”timeout”)
options(old_setting)

Index

app_cache_dir, 2
app_cache_dir(), 4, 10

base: :readRDS(), 7, 9
base: :saveRDS(), 5-7, 9

construct_cached_file_path, 2
construct_processed_filename, 3
construct_processed_filename(), 5,7
create_app_cache_dir, 4

maybe_cache, 4
maybe_process, 5
maybe_process(), 4

read_or_cache, 7
read_or_process, 8
read_or_process(), 7

set_app_cache_dir, 10
set_timeout, 11

12

	app_cache_dir
	construct_cached_file_path
	construct_processed_filename
	create_app_cache_dir
	maybe_cache
	maybe_process
	read_or_cache
	read_or_process
	set_app_cache_dir
	set_timeout
	Index

