Package: nectar (via r-universe)

October 23, 2024

Title A Framework for Web API Packages
Version 0.0.0.9003

Description An opinionated framework for use within api-wrapping R
packages.

License MIT + file LICENSE
URL https://nectar.api2r.org, https://github.com/jonthegeek/nectar

BugReports https://github.com/jonthegeek/nectar/issues
Depends R (>=3.5.0)

Imports cli, curl, fs, glue, httr2 (>= 1.0.0), jsonlite, purrr, rlang,
stbl, vctrs

Suggests covr, testthat (>= 3.0.0)

Remotes jonthegeek/stbl

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://jonthegeek.r-universe.dev

RemoteUrl https://github.com/jonthegeek/nectar
RemoteRef HEAD

RemoteSha cf92bd8f0c6flecdcc44b3a55e05146af3efa84f

Contents

call_api e e e e
compact_nested_list.
do if fn defined
reqg_auth_api_key L
req_modify e e e
req_perform_opinionated

https://nectar.api2r.org
https://github.com/jonthegeek/nectar
https://github.com/jonthegeek/nectar/issues

2 call_api
TEQ_PIEPATC .« . v v v v e 8
TE_SELUP e 9
TESP_PATSE « o v v v v e e e e e e e e e e e e e e e e e e 9
stabilize_string oL e e e 10
url_normalize e 12
url_path_append 12

Index 14

call_api Send a request to an API

Description

This function implements an opinionated framework for making API calls. It is intended to be used
inside an API client package. It serves as a wrapper around the req_ family of functions, such as
httr2::request(),aswellashttr2::req_perform() and httr2::req_perform_iterative(),
and, by default, httr2::resp_body_json().

Usage

call_api(
base_url,
path = NULL,
query = NULL,
body = NULL,
mime_type = NULL,
method = NULL,
security_fn = NULL,
security_args = list(),
response_parser = httr2::resp_body_json,
response_parser_args = list(),
next_req = NULL,
max_regs = Inf,
max_tries_per_req = 3,
user_agent = "nectar (https://nectar.api2r.org)”
)
Arguments
base_url The part of the url that is shared by all calls to the API. In some cases there may
be a family of base URLs, from which you will need to choose one.
These dots are for future extensions and must be empty.
path The route to an API endpoint. Optionally, a list or character vector with the path

as one or more unnamed arguments (which will be concatenated with "/") plus
named arguments to glue: :glue() into the path.

call_api 3

query An optional list or character vector of parameters to pass in the query portion of
the request. Can also include a .multi argument to passto httr2::req_url_query()
to control how elements containing multiple values are handled.

body An object to use as the body of the request. If any component of the body is
a path, pass it through fs: :path() or otherwise give it the class "fs_path" to
indicate that it is a path.

mime_type A character scalar indicating the mime type of any files present in the body.
Some APIs allow you to leave this as NULL for them to guess.

method If the method is something other than GET or POST, supply it. Case is ignored.

security_fn A function to use to authenticate the request. By default (NULL), no authentica-
tion is performed.

security_args An optional list of arguments to the security_fn function.
response_parser
A function to parse the server response (resp). Defaults to httr2: :resp_body_json(),
since JSON responses are common. Set this to NULL to return the raw response
from httr2::req_perform().
response_parser_args
An optional list of arguments to pass to the response_parser function (in ad-
dition to resp).

next_req An optional function that takes the previous response (resp) to generate the next
requestinacallto httr2::req_perform_iterative(). This function can usu-
ally be generated using one of the iteration helpers described in httr2: :iterate_with_offset().

max_reqs The maximum number of separate requests to perform. Passed to the max_reqs
argument of httr2: :req_perform_iterative() when next_req is supplied.
The default 2 should likely be changed to Inf after you validate the function.

max_tries_per_req
The maximum number of times to attempt each individual request. Passed to
the max_tries argument of httr2: :reg_retry().

user_agent A string to identify where this request is coming from. It’s polite to set the user
agent to identify your package, such as "MyPackage (https://mypackage.com)".

Value

The response from the API, parsed by the response_parser.

See Also

reg_setup(), req_modify(), req_perform_opinionated(), resp_parse(),and do_if_fn_defined()
for finer control of the process.

4 do_if fn_defined

compact_nested_list Discard empty elements

Description

Discard empty elements in nested lists.

Usage

compact_nested_list(lst)

Arguments

1st A (nested) list to filter.

Value

The list, minus empty elements and branches.

Examples
x <= list(
a = list(
b = letters,
¢ = NULL,
d=1:5
),
e = NULL,
f=1:3
)

compact_nested_list(x)

do_if_fn_defined Use a provided function

Description

When constructing API calls programmatically, you may encounter situations where an upstream
task should indicate which function to apply. For example, one endpoint might use a special security
function that isn’t used by other endpoints. This function exists to make coding such situations
easier.

Usage
do_if_fn_defined(x, fn = NULL, ...)

req_auth_api_key 5

Arguments
X An object to potentially modify, such as a httr2: :request() object.
fn A function to apply to x. If fn is NULL, x is returned unchanged.
Additional arguments to pass to fn.
Value

The object, potentially modified.

Examples

build_api_req <- function(endpoint, security_fn = NULL, ...) {
req <- httr2::request("https://example.com"”)
req <- httr2::req_url_path_append(req, endpoint)
do_if_fn_defined(req, security_fn, ...)

}

Most endpoints of this API do not require authentication.
unsecure_req <- build_api_req("unsecure_endpoint")
unsecure_req$headers

But one endpoint requires
secure_req <- build_api_req(
"secure_endpoint”, httr2::req_auth_bearer_token, "secret-token”

)

secure_req$headers$Authorization

reg_auth_api_key Authenticate with an API key

Description

Many APIs provide API keys that can be used to authenticate requests (or, often, provide other
information about the user). This function helps to apply those keys to requests.

Usage
reqg_auth_api_key(req, ..., location = "header")
Arguments
req A httr2::request() object.
Additional parameters depending on the location of the API key.
* parameter_name ("header" or "query" only) The name of the parameter to
use in the header or query.
* api_key ("header" or "query" only) The API key to use.
* path ("cookie" only) The location of the cookie.
location Where the API key should be passed. One of "header” (default), "query”, or

"cookie".

6 req_modify

Value

A httr2::request() object.

req_modify Modify an API request for a particular endpoint

Description

Modify the basic request for an API by adding a path and any other path-specific properties.

Usage
reqg_modify(
req,
path = NULL,
query = NULL,
body = NULL,

mime_type = NULL,
method = NULL

)
Arguments
req A httr2::request() object.
These dots are for future extensions and must be empty.
path The route to an API endpoint. Optionally, a list or character vector with the path
as one or more unnamed arguments (which will be concatenated with "/") plus
named arguments to glue: :glue() into the path.
query An optional list or character vector of parameters to pass in the query portion of
the request. Can also include a .multi argument to passto httr2::req_url_query()
to control how elements containing multiple values are handled.
body An object to use as the body of the request. If any component of the body is
a path, pass it through fs::path() or otherwise give it the class "fs_path" to
indicate that it is a path.
mime_type A character scalar indicating the mime type of any files present in the body.
Some APIs allow you to leave this as NULL for them to guess.
method If the method is something other than GET or POST, supply it. Case is ignored.
Value

A httr2::request() object.

req_perform_opinionated 7

Examples

req_base <- reg_setup(
"https://example.com”,
user_agent = "my_api_client (https://my.api.client)”

)

req <- reqg_modify(req_base, path = c("specific/{path}", path = "endpoint"))
req

req <- reqg_modify(req, query = c("paraml” = "valuel”, "param2" = "value2"))
req

reg_perform_opinionated
Perform a request with opinionated defaults

Description

This function ensures that a request has httr2::req_retry() applied, and then performs the re-
quest, using either httr2::reg_perform_iterative() (if a next_req function is supplied) or
httr2::req_perform() (if not).

Usage
req_perform_opinionated(
req,

L

next_req = NULL,

max_reqs = 2,
max_tries_per_req = 3
)
Arguments
req The first request to perform.
These dots are for future extensions and must be empty.
next_req An optional function that takes the previous response (resp) to generate the next
requestinacalltohttr2: :req_perform_iterative(). This function can usu-
ally be generated using one of the iteration helpers described in httr2: :iterate_with_offset().
max_reqs The maximum number of separate requests to perform. Passed to the max_reqs

argument of httr2: :req_perform_iterative() when next_req is supplied.

The default 2 should likely be changed to Inf after you validate the function.
max_tries_per_req

The maximum number of times to attempt each individual request. Passed to

the max_tries argument of httr2::req_retry().

Value

Alistof httr2::response() objects, one for each request performed.

8 req_prepare

req_prepare Prepare a request for an AP

Description

This function implements an opinionated framework for preparing an API request. It is intended to
be used inside an API client package. It serves as a wrapper around the reqg_ family of functions,
such as httr2: :request().

Usage

reqg_prepare(
base_url,

path = NULL,
query = NULL,
body = NULL,

mime_type = NULL,
method = NULL,

user_agent = "nectar (https://nectar.api2r.org)”
)
Arguments

base_url The part of the url that is shared by all calls to the API. In some cases there may
be a family of base URLSs, from which you will need to choose one.
These dots are for future extensions and must be empty.

path The route to an API endpoint. Optionally, a list or character vector with the path
as one or more unnamed arguments (which will be concatenated with "/") plus
named arguments to glue: :glue() into the path.

query An optional list or character vector of parameters to pass in the query portion of
the request. Can also include a .multi argumentto passtohttr2::req_url_query()
to control how elements containing multiple values are handled.

body An object to use as the body of the request. If any component of the body is
a path, pass it through fs::path() or otherwise give it the class "fs_path" to
indicate that it is a path.

mime_type A character scalar indicating the mime type of any files present in the body.
Some APIs allow you to leave this as NULL for them to guess.

method If the method is something other than GET or POST, supply it. Case is ignored.

user_agent A string to identify where this request is coming from. It’s polite to set the user
agent to identify your package, such as "MyPackage (https://mypackage.com)"

Value

A httr2::request() object.

req_setup 9

reg_setup Setup a basic API request

Description

For a given API, the base_url and user_agent will almost always be the same. Use this function
to prepare that piece of the request once for easy reuse.

Usage
reg_setup(base_url, ..., user_agent = "nectar (https://nectar.api2r.org)”)
Arguments
base_url The part of the url that is shared by all calls to the API. In some cases there may
be a family of base URLs, from which you will need to choose one.
These dots are for future extensions and must be empty.
user_agent A string to identify where this request is coming from. It’s polite to set the user
agent to identify your package, such as "MyPackage (https://mypackage.com)".
Value

A httr2::request() object.

Examples

req_setup("https://example.com”)
reg_setup(

"https://example.com”,

user_agent = "my_api_client (https://my.api.client)”
)

resp_parse Parse one or more responses

Description

httr2 provides two methods for performing requests: httr2::req_perform(), which returns a
single httr2::response() object, and httr2: :req_perform_iterative(), which returns a list
of httr2::response() objects. This function automatically determines whether a single response
or multiple responses have been returned, and parses the responses appropriately.

10 stabilize_string

Usage

resp_parse(resp, ...)

Default S3 method:
resp_parse(
resp,
arg = rlang::caller_arg(resp),
call = rlang::caller_env()

)
S3 method for class 'httr2_response'’
resp_parse(resp, ..., response_parser = httr2::resp_body_json)
Arguments
resp A single httr2: :response() object (as returned by httr2::req_perform())

or a list of such objects (as returned by httr2: :req_perform_iterative()).

Additional arguments passed on to the response_parser function (in addition
to resp).

arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.
response_parser
A function to parse the server response (resp). Defaults tohttr2: : resp_body_json(),
since JSON responses are common. Set this to NULL to return the raw response
from httr2::reqg_perform().

Value

The response parsed by the response_parser. If resp was a list, the parsed responses are con-
catenated when possible. Unlike httr2::resps_data, this function does not concatenate raw vector
responses.

stabilize_string Ensure an argument is a length-1 character

Description

Calls to APIs often require a string argument. This function ensures that those arguments are length-
1, non-NA character vectors, or length-1, non-NA vectors that can be coerced to character vectors.
This is intended to ensure that calls to the API will not fail with predictable errors, thus avoiding
unnecessary internet traffic.

stabilize_string 11

Usage
stabilize_string(
X,
regex = NULL,

arg = rlang::caller_arg(x),
call = rlang::caller_env()

)
Arguments
X The argument to stabilize.
Arguments passed on to stbl::stabilize_chr_scalar
x_class Character. The class name of x to use in error messages. Use this if
you remove a special class from x before checking its coercion, but want
the error message to match the original class.
regex Character scalar. An optional regex pattern to compare the value(s) of x against.
If a complex regex pattern throws an error, try installing the stringi package with
install.packages("stringi").
arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
Value

x coerced to a length-1 character vector, if possible.

Examples

stabilize_string(”a")
stabilize_string(1.1)

x <- letters
try(stabilize_string(x))
x <- NULL
try(stabilize_string(x))
x <- character()
try(stabilize_string(x))
x <- NA
try(stabilize_string(x))

12 url_path_append

url_normalize Normalize a URL

Description

This function normalizes a URL by adding a trailing slash to the base if it is missing. It is mainly
for testing and other comparisons.

Usage

url_normalize(url)

Arguments

url A URL to normalize.

Value

A normalized URL

Examples

identical(
url_normalize("https://example.com”),
url_normalize("https://example.com/")

)

identical(
url_normalize("https://example.com?param=value”),
url_normalize("https://example.com/?param=value”)

)

url_path_append Add path elements to a URL

Description

Append zero or more path elements to a URL without duplicating "/" characters. Based on httr2::req_url_path_append()

Usage

url_path_append(url, ...)
Arguments

url A URL to modify.

Path elements to append, as strings.

url_path_append

Value

A modified URL.

Examples

url_path_append("https://example.com”, "api"”, "v1", "users")
url_path_append("https://example.com/", "/api", "/v1", "/users")
url_path_append("https://example.com/", "/api/v1/users”)

13

Index

abort(), 11

call_api, 2
compact_nested_list, 4

do_if_fn_defined, 4
do_if_fn_defined(), 3

fs::path(), 3,6, 8
glue::glue(), 2,6, 8

httr2::iterate_with_offset(), 3,7
httr2::req_perform(), 2, 3,7,9, 10
httr2::req_perform_iterative(), 2, 3, 7.
9,10
httr2::req_retry(), 3,7
httr2::req_url_path_append(), 12
httr2::req_url_query(), 3,6, 8
httr2::request(),2,5,6,8, 9
httr2::resp_body_json(), 2, 3, 10
httr2::response(), 7,9, 10
httr2::resps_data, 10

reqg_auth_api_key, 5
reqg_modify, 6
reqg_modify(), 3
req_perform_opinionated, 7
reqg_perform_opinionated(), 3
reqg_prepare, 8

reg_setup, 9

reqg_setup(), 3

request, 7

resp_parse, 9
resp_parse(), 3

stabilize_string, 10
stbl::stabilize_chr_scalar, /1

url_normalize, 12
url_path_append, 12

14

	call_api
	compact_nested_list
	do_if_fn_defined
	req_auth_api_key
	req_modify
	req_perform_opinionated
	req_prepare
	req_setup
	resp_parse
	stabilize_string
	url_normalize
	url_path_append
	Index

