Package: tidybert (via r-universe)

November 20, 2024

Title Tidy BERT-like Models
Version 0.0.0.9900

Description Implements BERT-like NLP models with a consistent
interface for fitting and creating predictions. The models are
fully compatible with the tidymodels framework.

License Apache License (>= 2)
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Imports dplyr, glue, hardhat, luz, magrittr, methods, purrr, rlang,
stats, tibble, torch, torchtransformers (>= 0.0.0.9500)

Remotes macmillancontentscience/torchtransformers

Suggests knitr, rmarkdown, testthat (>= 3.0.0), dials, dlr, parsnip,
recipes, rsample, stringr, tidymodels, tidyr, wordpiece,
wordpiece.data

URL https://github.com/macmillancontentscience/tidybert

BugReports https://github.com/macmillancontentscience/tidybert/issues
Config/testthat/edition 3

VignetteBuilder knitr

Config/pak/sysreqs make libicu-dev

Repository https://jonthegeek.r-universe.dev

RemoteUrl https://github.com/macmillancontentscience/tidybert

RemoteRef HEAD

RemoteSha e25e1912249af094d275cff414598f3ad0cfbbaf

Contents

bert . . . e
bert_classification . . . . . . . . . ...


https://github.com/macmillancontentscience/tidybert
https://github.com/macmillancontentscience/tidybert/issues

2 bert
DErt_regression . . . . . . o o . e e e e e e e e e e e 6
DErt_type . . . . o e e e e e e 8
model_bert_linear . . . . . . . . . ... e e 9
N_tOKENS . . . . . e e 10
predict.bert_classification . . . . . . . . ... 10
predict.bert_regression . . . . ... oL e 11
tidy_bert_output. . . . . . . ... e e e e 12

Index 13

bert Fine-Tune a BERT Model

Description

bert() defines a model that fine-tunes a pre-trained BERT-like model to a classification or regres-
sion task.

Usage

bert(
mode = "unknown",
engine = "tidybert”,
epochs = 10,
batch_size = 128,
bert_type = "bert_small_uncased”,
n_tokens = 1
)
Arguments
mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".
engine A single character string specifying what computational engine to use for fitting.
The only implemented option is "tidybert".
epochs A single integer indicating the maximum number of epochs for training, or a
vector of two integers, indicating the minimum and maximum number of epochs
for training.
batch_size The number of samples to load in each batch during training.
bert_type Character; which flavor of BERT to use. See available_berts() for known
models.
n_tokens An integer scalar indicating the number of tokens in the output.
Details

This package (tidybert) is currently the only engine for this model. See tidybert_engine for pa-
rameters available in this engine.

The defined model is appropriate for use with parsnip and the rest of the tidymodels framework.



bert_classification 3

Value

A specification for a model.

bert_classification Fit a BERT-style neural network

Description

bert_classification() fits a classifier neural network in the style of BERT from Google Re-
search.

Usage

bert_classification(x, ...)

## Default S3 method:
bert_classification(x, ...)

## S3 method for class 'data.frame'
bert_classification(
X)
Y,
valid_x = 0.1,
valid_y = NULL,
bert_type = "bert_tiny_uncased”,
n_tokens = torchtransformers::config_bert(bert_type, "max_tokens"),
loss = torch::nn_cross_entropy_loss(),
optimizer = torch::optim_adam,
metrics = list(luz::luz_metric_accuracy()),
epochs = 10,
batch_size = 128,
luz_opt_hparams = 1list(),

## S3 method for class 'matrix'
bert_classification(

X’
Y,
valid_x = 0.1,
valid_y = NULL,

bert_type = "bert_tiny_uncased”,

n_tokens = torchtransformers::config_bert(bert_type, "max_tokens"),
loss = torch::nn_cross_entropy_loss(),

optimizer = torch::optim_adam,

metrics = list(luz::luz_metric_accuracy()),


https://github.com/google-research/bert
https://github.com/google-research/bert

)

epochs = 10,
batch_size = 128,
luz_opt_hparams = list(),

## S3 method for class 'formula'
bert_classification(

formula,

data,

valid_data = 0.1,

bert_type = "bert_tiny_uncased”,

n_tokens = torchtransformers::config_bert(bert_type,
loss = torch::nn_cross_entropy_loss(),
optimizer = torch::optim_adam,

metrics = list(luz::luz_metric_accuracy()),
epochs = 10,

batch_size = 128,

luz_opt_hparams = list(),

Arguments

X

Depending on the context:

* A data frame of character predictors.
* A matrix of character predictors.

bert_classification

"max_tokens"),

* Note that a recipe created from recipes::recipe() will NOT currently

work.

Additional parameters to pass to methods or to luz for fitting.

When x is a data frame or matrix, y is the outcome specified as:

¢ A data frame with 1 factor column.
¢ A matrix with 1 factor column.
¢ A factor vector.

valid_x Depending on the context:

valid_y

bert_type

n_

* A number between 0 and 1, representing the fraction of data to use for

model validation.

* Predictors in the same format as x. These predictors will be used for model

validation.

¢ NULL, in which case no data will be used for model validation.

format as y.

models.

When valid_x is a set of predictors, valid_y should be outcomes in the same

Character; which flavor of BERT to use. See available_berts() for known

tokens An integer scalar indicating the number of tokens in the output.



bert_classification 5

loss (function, optional) An optional function with the signature function(input, target).
It’s only requires if your nn_module doesn’t implement a method called loss.

optimizer (torch_optimizer, optional) A function with the signature function(parameters, ...)
that is used to initialize an optimizer given the model parameters.

metrics (list, optional) A list of metrics to be tracked during the training procedure.
Sometimes, you want some metrics to be evaluated only during training or vali-
dation, in this case you can pass a luz_metric_set() object to specify metrics
used in each stage.

epochs (int) The maximum number of epochs for training the model. If a single value
is provided, this is taken to be the max_epochs and min_epochs is set to O.
If a vector of two numbers is provided, the first value is min_epochs and the
second value is max_epochs. The minimum and maximum number of epochs
are included in the context object as ctx$min_epochs and ctx$max_epochs,
respectively.

batch_size (int, optional): how many samples per batch to load (default: 1).

luz_opt_hparams
List; parameters to pass on to set_opt_hparams to initialize the optimizer.

formula A formula specifying the outcome term on the left-hand side, and the predictor
terms on the right-hand side.

data When a formula is used, data is specified as:

* A data frame containing both the predictors and the outcome. The predic-
tors should be character vectors. The outcome should be a factor.

valid_data When a formula is used, valid_data can be:

* A data frame containing both the predictors and the outcome to be used
for model validation, in the same format as data.

* A number between O and 1, representing the fraction of data to use for
model validation.

¢ NULL, in which case no data will be used for model validation.

Details

The generated model is a pretrained BERT model with a final dense linear layer to map the output
to the outcome levels, constructed using model_bert_linear(). That pretrained model is fine-
tuned on the provided training data. Input data (during both fitting and prediction) is automatically
tokenized to match the tokenization expected by the BERT model.

Value

A bert_classification object.



6 bert_regression

bert_regression Fit a BERT-style neural network

Description

bert_regression() fits a regression neural network in the style of BERT from Google Research.

Usage

bert_regression(x, ...)

## Default S3 method:
bert_regression(x, ...)

## S3 method for class 'data.frame'
bert_regression(
X!
Y,
valid_x = 0.1,
valid_y = NULL,
bert_type = "bert_tiny_uncased”,
n_tokens = torchtransformers::config_bert(bert_type, "max_tokens"),
loss = torch::nn_mse_loss(),
optimizer = torch::optim_adam,
metrics = list(luz::luz_metric_rmse()),
epochs = 10,
batch_size = 128,
luz_opt_hparams = 1list(),

)

## S3 method for class 'matrix'
bert_regression(

X’
Y,
valid_x = 0.1,
valid_y = NULL,

bert_type = "bert_tiny_uncased”,

n_tokens = torchtransformers::config_bert(bert_type, "max_tokens"),
loss = torch::nn_mse_loss(),

optimizer = torch::optim_adam,

metrics = list(luz::luz_metric_rmse()),

epochs = 10,

batch_size = 128,

luz_opt_hparams = list(),


https://github.com/google-research/bert

bert_regression 7

## S3 method for class 'formula’
bert_regression(
formula,
data,
valid_data = 0.1,
bert_type = "bert_tiny_uncased”,
n_tokens = torchtransformers::config_bert(bert_type, "max_tokens"),
loss = torch::nn_mse_loss(),
optimizer = torch::optim_adam,
metrics = list(luz::luz_metric_rmse()),
epochs = 10,
batch_size = 128,
luz_opt_hparams = list(),

)
Arguments
X Depending on the context:
* A data frame of character predictors.
* A matrix of character predictors.
* Note that a recipe created from recipes::recipe() will NOT currently
work.
Additional parameters to pass to methods or to luz for fitting.
y When x is a data frame or matrix, y is the outcome specified as:
* A data frame with 1 numerical column.
* A matrix with 1 numerical column.
* A numerical vector.
valid_x Depending on the context:
* A number between 0 and 1, representing the fraction of data to use for
model validation.
* Predictors in the same format as x. These predictors will be used for model
validation.
¢ NULL, in which case no data will be used for model validation.
valid_y When valid_x is a set of predictors, valid_y should be outcomes in the same
format as y.
bert_type Character; which flavor of BERT to use. See available_berts() for known
models.
n_tokens An integer scalar indicating the number of tokens in the output.
loss (function, optional) An optional function with the signature function(input, target).
It’s only requires if your nn_module doesn’t implement a method called loss.
optimizer (torch_optimizer, optional) A function with the signature function(parameters, ...)

that is used to initialize an optimizer given the model parameters.



metrics

epochs

batch_size

luz_opt_hparams

formula

data

valid_data

Details

bert_type

(list, optional) A list of metrics to be tracked during the training procedure.
Sometimes, you want some metrics to be evaluated only during training or vali-
dation, in this case you can pass a luz_metric_set() object to specify metrics
used in each stage.

(int) The maximum number of epochs for training the model. If a single value
is provided, this is taken to be the max_epochs and min_epochs is set to 0.
If a vector of two numbers is provided, the first value is min_epochs and the
second value is max_epochs. The minimum and maximum number of epochs
are included in the context object as ctx$min_epochs and ctx$max_epochs,
respectively.

(int, optional): how many samples per batch to load (default: 1).

List; parameters to pass on to set_opt_hparams to initialize the optimizer.

A formula specifying the outcome term on the left-hand side, and the predictor
terms on the right-hand side.

When a formula is used, data is specified as:

* A data frame containing both the predictors and the outcome. The predic-
tors should be character vectors. The outcome should be numerical.

When a formula is used, valid_data can be:
* A data frame containing both the predictors and the outcome to be used
for model validation, in the same format as data.

* A number between O and 1, representing the fraction of data to use for
model validation.

¢ NULL, in which case no data will be used for model validation.

The generated model is a pretrained BERT model with a final dense linear layer to map the output
to a numerical value, constructed using model_bert_linear(). That pretrained model is fine-
tuned on the provided training data. Input data (during both fitting and prediction) is automatically
tokenized to match the tokenization expected by the BERT model.

Value

A bert_regression object.

bert_type

Pre-Trained BERT Model

Description

The pre-trained BERT model that will be fine-tuned for a model.



model_bert_linear 9

Usage
bert_type(
values = c("bert_tiny_uncased”, "bert_mini_uncased”, "bert_small_uncased”,
"bert_medium_uncased”, "bert_base_uncased”, "bert_base_cased”, "bert_large_uncased")
)
Arguments
values A character vector indicating the names of available models. The default uses
the 7 named pre-trained BERT models. We recommend that you select specific
models that are likely to work on your hardware. See torchtransformers: :available_berts()
for possible values.
Value

A parameter that can be tuned with the tune package.

Examples

if (rlang::is_installed("dials")) {
bert_type()
3

model_bert_linear Pretrained BERT Model with Linear Output

Description

Construct a BERT model with pretrained weights, and add a final dense linear layer to transform to
a desired number of dimensions. Note that we only use the CLS token output from the final layer
of the BERT model. It is possible to attach a classification or regression head to BERT using other
techniques, but here we use this simple technique.

Usage

model_bert_linear(bert_type = "bert_tiny_uncased”, output_dim = 1L)

Arguments
bert_type Character; which flavor of BERT to use. See available_berts() for known
models.
output_dim Integer; the target number of output dimensions.
Value

A torch neural net model with pretrained BERT weights and a final dense layer.



10 predict.bert_classification

n_tokens Number of Tokens

Description

The number of tokens to use for tokenization of predictors.

Usage

n_tokens(range = c(1, 9), trans = scales::log2_trans())

Arguments
range A two-element integer vector with the smallest and largest possible values. By
default these values should be the powers of two to try.
trans An optional transformation to apply. By default, scales: :log2_trans() (mean-
ing take the log2 of the original values, resulting in small-number range values).
Value

A parameter that can be tuned with the tune package.

Examples

if (rlang::is_installed("dials")) {
n_tokens()

}

predict.bert_classification
Predict from a bert_classification model.

Description

Predict from a bert_classification model.

Usage

## S3 method for class 'bert_classification'
predict(object, new_data, type = c("class"”, "prob"), ...)



predict.bert_regression 11

Arguments
object A bert_classification object.
new_data A data frame or matrix of new character predictors. This data is automatically
tokenized to match the tokenization expected by the BERT model.
type A single character. The type of predictions to generate. Valid options are:
* "class” for "hard" class predictions.
* "prob” for class probabilities.
Not used, but required for extensibility.
Value

A tibble of predictions. The number of rows in the tibble is guaranteed to be the same as the number
of rows in new_data.

predict.bert_regression
Predict from a bert_regression model.

Description

Predict from a bert_regression model.

Usage
## S3 method for class 'bert_regression'
predict(object, new_data, ...)
Arguments
object A bert_regression object.
new_data A data frame or matrix of new character predictors. This data is automatically

tokenized to match the tokenization expected by the BERT model.

Not used, but required for extensibility.

Value

A tibble of predictions. The number of rows in the tibble is guaranteed to be the same as the number
of rows in new_data.



12 tidy_bert_output

tidy_bert_output Tidy the BERT Output

Description

Given the output from a transformer model, construct tidy data frames for the layer outputs and the
attention weights.

Usage

tidy_bert_output(bert_model_output, tokenized)

Arguments

bert_model_output
The output from a BERT model.

tokenized The raw output from torchtransformers: : tokenize_bert.

Value

A list of data frames, one for the layer output embeddings and one for the attention weights.



Index

available_berts(),2,4,7,9

bert, 2
bert_classification, 3
bert_regression, 6
bert_type, 8

luz_metric_set(), 5,8

model_bert_linear, 9
model_bert_linear(), 5,8

n_tokens, 10

predict.bert_classification, 10
predict.bert_regression, 11

recipes::recipe(), 4,7

scales::log2_trans(), 10
set_opt_hparams, 5, 8

tidy_bert_output, 12

tidybert_engine, 2

torchtransformers: :available_berts(),
9

13



	bert
	bert_classification
	bert_regression
	bert_type
	model_bert_linear
	n_tokens
	predict.bert_classification
	predict.bert_regression
	tidy_bert_output
	Index

